Abstract

Stroke is a devastating disease leading to cell death and disconnection between neurons both locally and remote, often resulting in severe long-term disability. Spontaneous reorganization of areas and pathways not primarily affected by ischemia is, however, associated with albeit limited recovery of function. Quantitative mapping of whole-brain changes of structural connectivity concerning the ischemia-induced sensorimotor deficit and recovery thereof would help to target structural plasticity in order to improve rehabilitation. Currently, only in vivo diffusion MRI can extract the structural whole-brain connectome noninvasively. This approach is, however, used primarily in human studies. Here, we applied atlas-based MRI analysis and graph theory to DTI in wild-type mice with cortical stroke lesions. Using a DTI network approach and graph theory, we aimed at gaining insights into the dynamics of the spontaneous reorganization after stroke related to the recovery of function. We found evidence for altered structural integrity of connections of specific brain regions, including the breakdown of connections between brain regions directly affected by stroke as well as long-range rerouting of intra- and transhemispheric connections related to improved sensorimotor behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.