Abstract

In this study, we employ the Sachs graph theory to formulate the conduction properties of a single-molecular junction consisting of a molecule in which one carbon atom of an alternant hydrocarbon is replaced with a heteroatom. The derived formula includes odd and even powers of the adjacency matrix, unlike the graph of the parental structure. These powers correspond to odd- and even-length walks. Furthermore, because the heteroatom is represented as a self-loop of unit length in the graph, an odd number of passes of the self-loop will change the parity of the length of the walk. To confirm the aforementioned effects of heteroatoms on conduction in an actual sample, the conduction behavior of meta-connected molecular junctions consisting of a heterocyclic six-membered ring, whose conductive properties have already been experimentally determined, was analyzed based on the enumerated number of walks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call