Abstract

We relate coding for the two-user multiple-access binary adder channel to a problem in graph theory, known as the independent set problem. Graph-theoretic approaches to coding for both synchronized and nonsynchronized two-user adder channels are presented. Using the Tuŕan theorem on the independence number of a simple graph, we are able to improve the lower bounds on the achievable rates of uniquely and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\delta</tex> -decodable codes for the synchronized adder channel derived by Kasami and Lin. We are also able to derive lower bounds on the achievable rates of uniquely decodable codes for the nonsynchronized adder channel. We show that the rates of Deaett-Wolf codes for the nonsynchronized adder channel fall below the bounds. Synchronizing sequences for the nonsynchronized adder channel are constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.