Abstract
In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch $\ell >0$ and constant Gaussian curvature or constant extrinsic curvature in the product space $\mathbb H^2 \times \mathbb R$. In particular, we determine flat and extrinsically flat graph surfaces in $\mathbb H^2 \times \mathbb R$. We also obtain complete and non-complete vertical graph surfaces in $\mathbb H^2 \times \mathbb R$ with negative constant Gaussian curvature and zero extrinsic curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.