Abstract

In intelligent transportation systems (ITS), incomplete traffic data due to sensor malfunctions and communication faults, seriously restricts the related applications of ITS. Recovering missing data from incomplete traffic data becomes an important issue for ITS. Existing works on traffic data imputation cannot achieve satisfactory accuracy due to inefficiently exploiting the underlying topological structure of the traffic data. In this paper, we model the topology of the road network as a graph and introduce graph Fourier transform (GFT) to process the traffic data. Then we utilize an algebraic framework termed as graph-tensor singular value decompositions (GT-SVD) to extract the hidden spatial information of traffic data. Furthermore, we propose a novel graph spectral regularized tensor completion algorithm based on GT-SVD and construct temporal regularized constraints to improve the recovery accuracy. The extensive experimental results on real traffic datasets demonstrate that the proposed algorithm outperforms the state-of-the-art methods under different missing patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.