Abstract

Traffic information can reflect the operating status of a city, and accurate traffic forecasting is critical in intelligent transportation systems (ITS) and urban planning. However, traffic information has complex nonlinearity and dynamic spatial-temporal dependencies due to human mobility, bringing new traffic forecasting challenges. This paper proposed a graph spatial-temporal transformer network for traffic prediction (GSTTN) to cope with the above problems. Specifically, the proposed framework explores spatial characteristics of the across-road network of traffic information hidden in human behavior patterns via a multi-view graph convolutional network (GCN). Furthermore, the transformer network with a multi-head attention mechanism is adopted to capture the random disturbance in the time series characteristics of traffic information. As a result, these two components can be used to model spatial relations and temporal trends. Finally, we examine real-world datasets, and the experiments show that the proposed framework outperforms the current state-of-the-art baselines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call