Abstract

In this paper we decouple the problem of measuring graph similarity into two sequential steps. The first step is the linearization of the quadratic assignment problem (QAP) in a low-dimensional space, given by the embedding trick. The second step is the evaluation of an information-theoretic distributional measure, which relies on deformable manifold alignment. The proposed measure is a normalized conditional entropy, which induces a positive definite kernel when symmetrized. We use bypass entropy estimation methods to compute an approximation of the normalized conditional entropy. Our approach, which is purely topological (i.e., it does not rely on node or edge attributes although it can potentially accommodate them as additional sources of information) is competitive with state-of-the-art graph matching algorithms as sources of correspondence-based graph similarity, but its complexity is linear instead of cubic (although the complexity of the similarity measure is quadratic). We also determine that the ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.