Abstract
The hydrogen-bond networks and crystal packing of 81 unique secondary di- and polyamides in the Cambridge Structural Database are investigated. Graph-set analysis, as implemented in the RPluto program, is used to classify network motifs. These have been rationalized in terms of the relative dispositions of the amide groups. Peptide and retropeptides exhibit significant conformational flexibility, which permits alternative hydrogen-bonding patterns. In peptides, dihedral angles of -psi approximately varphi approximately 105 degrees allow an antiparallel ladder arrangement, containing rings of either the same or alternating sizes. For retropeptides, and diamides with an odd number of CH(2) spacers, this conformation leads to a parallel ladder with rings of equal size. If varphi approaches -60 degrees and psi 180 degrees, ladders adopt a helical twist, and if the conformation is distorted further, a three-dimensional network is usually adopted. Diamides with aromatic or an even number of CH(2) spacers generally form either antiparallel ladders or sheets, although some exhibit both polymorphs. Symmetry relationships within and between hydrogen-bonded chains, ladders and sheets in the crystal packing have also been analysed. Polyamides form considerably more complex networks, although many of the structural motifs present in the diamides occur as components of these networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section B Structural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.