Abstract

To provide a foundation for further theoretical and software development of the application of graph sets to patterns of hydrogen bonding and other intermolecular interactions a number of mathematical concepts and tools are defined, developed and demonstrated. Following a review of the basic definitions and uses of graph sets, the directional properties of hydrogen bonds are now included in the treatment. The concepts of a constructor graph and covalent distance matrix have been developed to aid in the generation of a qualitative descriptor for the straightforward, consistent and ultimately automatic (with appropriate software) definition of patterns. An additional mathematical tool, the arrowed T-labeling, has been developed to deal with situations in which pattern-forming moieties are located on crystallographic special positions. To demonstrate the utility and various features of these concepts they are applied in detail to two particular structures, polymorphic iminodiacetic acid [N-(carboxymethyl)glycine] and trans-tetraamminedinitrocobalt(III) acetate. To facilitate the application and use of graph sets many of these developments have already been incorporated into the software of the Cambridge Structural Database, as described in the accompanying paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.