Abstract
We consider the constrained longest common subsequence problem with an arbitrary set of input strings as well as an arbitrary set of pattern strings. This problem has applications, for example, in computational biology where it serves as a measure of similarity for sets of molecules with putative structures in common. We contribute in several ways. First, it is formally proven that finding a feasible solution of arbitrary length is, in general, NP-complete. Second, we propose several heuristic approaches: a greedy algorithm, a beam search aiming for feasibility, a variable neighborhood search, and a hybrid of the latter two approaches. An exhaustive experimental study shows the effectivity and differences of the proposed approaches in respect to finding a feasible solution, finding high-quality solutions, and runtime for both, artificial and real-world instance sets. The latter ones are generated from a set of 12681 bacteria 16S rRNA gene sequences and consider 15 primer contigs as pattern strings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.