Abstract

Scan statistics is one of the most popular approaches for anomaly detection in spatial and network data. In practice, there are numerous sources of uncertainty in the observed data. However, most prior works have overlooked such uncertainty, which can affect the accuracy and inferences of such methods. In this paper, we develop the first systematic approach to incorporating uncertainty in scan statistics. We study two formulations for robust scan statistics, one based on the sample average approximation and the other using a max-min objective. We show that uncertainty significantly increases the computational complexity of these problems. Rigorous algorithms and efficient heuristics for both formulations are developed with justification of theoretical bounds. We evaluate our proposed methods on synthetic and real datasets, and we observe that our methods give significant improvement in the detection power as well as optimization objective, relative to a baseline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call