Abstract

In this modern era, time and cases related to time is very important to us. For shortening time, Eulerian Circuit can open a new dimension. In computer science, social science and natural science, graph theory is a stimulating space for the study of proof techniques. Graphs are also effective in modeling a variety of optimization cases like routing protocols, network management, stochastic approaches, street mapping etc. Konigsberg Bridge Problem has seven bridges linked with four islands detached by a river in such a way that one can’t walk through each of the bridges exactly once and returning back to the starting point. Leonard Euler solved it in 1735 which is the foundation of modern graph theory. Euler’s solution for Konigsberg Bridge Problem is considered as the first theorem of Graph Theory which gives the idea of Eulerian circuit. It can be used in several cases for shortening any path. From the Konigsberg Bridge Problem to ongoing DNA fragmentation problem, it has its applications. Aiming to build such a dimension using Euler’s theorem and Konigsberg Bridge Problem, this paper presents about the history of remarkable Konigsberg Bridge Problem, Euler’s Explanation on it, an alternative explanation and some applications to Eulerian Circuit using graph routing and Fortran Coding of it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call