Abstract

The design problem of two-level MOS networks with a minimum number of cells is reduced to the covering problem of graphs with a minimum number of cliques. When every node of the graph corresponds to a minterm, an algorithm which generates an MOS network with a minimum number of cells is presented. The time complexity of this algorithm is O(M)2, where M is the number of minterms. When every node of the graph corresponds to a prime implicant, a procedure which generates near optimum solutions by selecting prime implicants with special properties is presented. About 2 percent of designed networks for four-variable functions are not minimal ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.