Abstract
Counting number of triangles in the graph is considered a major task in many large-scale graph analytics problems such as clustering coefficient, transitivity ratio, trusses, etc. In recent years, MapReduce becomes one of the most popular and powerful frameworks for analyzing large-scale graphs in clusters of machines. In this paper, we propose two new MapReduce algorithms based on graph partitioning. The two algorithms avoid the problem of duplicate counting triangles that other algorithms suffer from. The experimental results show a high efficiency of the two algorithms in comparison with an existing algorithm, overcoming it in the execution time performance, especially in very large-scale graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.