Abstract

A continuous quadratic programming formulation is given for min-cut graph partitioning problems. In these problems, we partition the vertices of a graph into a collection of disjoint sets satisfying specified size constraints, while minimizing the sum of weights of edges connecting vertices in different sets. An optimal solution is related to an eigenvector (Fiedler vector) corresponding to the second smallest eigenvalue of the graph's Laplacian. Necessary and sufficient conditions characterizing local minima of the quadratic program are given. The effect of diagonal perturbations on the number of local minimizers is investigated using a test problem from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.