Abstract
Vision tasks, such as segmentation, grouping, recognition, can be formulated as graph partition problems. The recent literature witnessed two popular graph cut algorithms: the Ncut using spectral graph analysis and the minimum-cut using the maximum flow algorithm. We present a third major approach by generalizing the Swendsen-Wang method - a well celebrated algorithm in statistical mechanics. Our algorithm simulates ergodic, reversible Markov chain jumps in the space of graph partitions to sample a posterior probability. At each step, the algorithm splits, merges, or regroups a sizable subgraph, and achieves fast mixing at low temperature enabling a fast annealing procedure. Experiments show it converges in 2-30 seconds on a PC for image segmentation. This is 400 times faster than the single-site update Gibbs sampler, and 20-40 times faster than the DDMCMC algorithm. The algorithm can optimize over the number of models and works for general forms of posterior probabilities, so it is more general than the existing graph cut approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.