Abstract

High-resolution simulations of particle-laden flows are computationally limited to a scale of thousands of particles due to the complex interactions between particles and fluid. Some approaches to increase the number of particles in such simulations require information about the fluid-induced force on a particle, which is a major challenge in this research area. In this paper, we present an approach to develop symbolic models for the fluid-induced force. We use a graph network as inductive bias to model the underlying pairwise particle interactions. The internal parts of the network are then replaced by symbolic models using a genetic programming algorithm. We include prior problem knowledge in our algorithm. The resulting equations show an accuracy in the same order of magnitude as state-of-the-art approaches for different benchmark datasets. They are interpretable and deliver important building blocks. Our approach is a promising alternative to “black-box” models from the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.