Abstract

Bearing faults are one kind of primary failure in rotatory machines. To avoid economic loss and casualties, it is important to diagnose bearing faults accurately. Vibration-based monitoring technology is widely used to detect bearing faults. Graph signal processing methods promising for the extraction of the fault features of bearings. In this work, graph multi-scale permutation entropy (MPEG) is proposed for bearing fault diagnosis. In the proposed method, the vibration signal is first transformed into a visibility graph. Secondly, a graph coarsening method is used to generate coarse graphs with different reduced sizes. Thirdly, the graph's permutation entropy is calculated to obtain bearing fault features. Finally, a support vector machine (SVM) is applied for fault feature classification. To verify the effectiveness of the proposed method, open-source and laboratory data are used to compare conventional entropies and other graph entropies. Experimental results show that the proposed method has higher accuracy and better robustness and de-noising ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call