Abstract

Neuropathic pain (NP) is a common and persistent disease that leads to immense suffering and serious social burden. Incomplete understanding of the underlying neural basis makes it difficult to achieve significant breakthroughs in the treatment of NP. We aimed to review the functional and structural brain topological properties in patients with NP and consider how graph measures reveal potential mechanisms and are applied to clinical practice. Related studies were searched in PubMed and Web of Science databases. Topological property changes in patients with NP, including small-worldness, functional separation, integration, and centrality metrics, were reviewed. The findings suggest that NP was characterized by retained but declined small-worldness, indicating an insidious imbalance between network integration and segregation. The global-level measures revealed decreased global and local efficiency in the NP, implying decreased information transfer efficiency for both long- and short-range connections. Altered nodal centrality measures involve various brain regions, mostly those associated with pain, cognition, and emotion. Graph theory is a powerful tool for identifying topological properties of patients with NP. These specific brain changes in patients with NP are very helpful in revealing the potential mechanisms of NP, developing new treatment strategies, and evaluating the efficacy and prognosis of NP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.