Abstract

Six wind turbine generators (WTGs) within a larger wind farm were chosen to model wake interaction losses by means of graph machine learning. 10-minute averaged measurement data values at each turbine over a period of two years were available. Based on the measured power output and ”free-stream” (undisturbed) wind conditions, determined at an upstream WTG unaffected by wakes, a data-driven free-stream power curve model was built. The cluster of WTGs was then represented by a graph data structure in the form of an adjacency matrix, where the turbines are nodes, which in turn are connected by edges. The edges are represented by weightings, indicating the strength of wake interactions between connected turbines. To learn the weightings, the predicted power outputs of the free-stream power curve model were compared to the measured power outputs and then optimised to account for these differences, which are attributed to wake interaction losses. After that a new data-driven model was trained, with free-stream wind speed, direction and yaw misalignment as features and the optimised weightings as targets. It was shown that the model was able to predict power curves that show clear patterns due to wake effects and reduced the root mean squared error, based on the measured and predicted values, by 16.29% compared to the free-stream power curve model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.