Abstract

The authors review graph kernels which is one of the state-of-the-art approaches using machine learning techniques for computational predictive modeling in chemoinformatics. The authors introduce a random walk graph kernel that defines a similarity between arbitrary two labeled graphs based on label sequences generated by random walks on the graphs. They introduce two applications of the graph kernels, the prediction of properties of chemical compounds and prediction of missing enzymes in metabolic networks. In the latter application, the authors propose to use the random walk graph kernel to compare arbitrary two chemical reactions, and apply it to plant secondary metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.