Abstract

We study the complexity of the Graph Isomorphism problem on graph classes that are characterized by a finite number of forbidden induced subgraphs, focusing mostly on the case of two forbidden subgraphs. We show hardness results and develop techniques for the structural analysis of such graph classes. Applied to the case of two forbidden subgraphs we obtain the following main result: A dichotomy into isomorphism complete and polynomial-time solvable graph classes for all but finitely many cases, whenever neither forbidden graph is a clique, a pan, or a complement of these graphs. Further reducing the remaining open cases we show that (with respect to graph isomorphism) forbidding a pan is equivalent to forbidding a clique of size three.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.