Abstract

Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph G amenable to color refinement if the color refinement procedure succeeds in distinguishing G from any non-isomorphic graph H. Babai et al. (SIAM J Comput 9(3):628–635, 1980) have shown that random graphs are amenable with high probability. We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time $${O((n+m)\log n)}$$ , where n and m denote the number of vertices and the number of edges in the input graph. We use our characterization of amenable graphs to analyze the approach to Graph Isomorphism based on the notion of compact graphs. A graph is called compact if the polytope of its fractional automorphisms is integral. Tinhofer (Discrete Appl Math 30(2–3):253–264, 1991) noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing compact graphs and recognizing them in polynomial time remains an open question. Our results in this direction are summarized below:

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call