Abstract
We study how the number c(X) of components of a graph X can be expressed through the number and properties of the components of a quotient graph X/\sim . We partially rely on classic qualifications of graph homomorphisms such as locally constrained homomorphisms and on the concept of equitable partition and orbit partition. We introduce the new definitions of pseudo-covering homomorphism and of component equitable partition, exhibiting interesting inclusions among the various classes of considered homomorphisms. As a consequence, we find a procedure for computing c(X) when the projection on the quotient X/\sim is pseudo-covering. That procedure becomes particularly easy to handle when the partition corresponding to X/\sim is an orbit partition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Rendiconti del Seminario Matematico della Università di Padova
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.