Abstract
We propose a novel graph filtering method for semi-supervised classification that adopts multiple graph shift matrices to obtain more flexibility in dealing with misleading features. The resulting optimization problem is solved with a computationally efficient alternating minimization approach. In simulation experiments, we implement both conventional and our proposed graph filters as semi-supervised classifiers on real and synthetic datasets to demonstrate advantages of our algorithms in terms of classification performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.