Abstract
Graph entropies have been introduced to quantitatively measure the structural information content of graphs and networks; they have plenty of applications in various fields. Utilizing the number of subgraphs to establish measures for determining the complexity of molecular graphs are also prevalent in the study of mathematical chemistry. In this paper, we develop a new graph entropy measure that is based on the number of spanning forests. We prove explicit expressions for the entropy for trees, unicyclic and bicyclic graphs, and show that the cycle graph Cn attains the maximal value of the entropy for unicyclic graphs with order n and large cycle lengths. Based on generating numerical results, we conjecture extremal unicyclic graphs with respect to the entropy as well as we compare the values of our entropy for c-cyclic graphs, and generate graphs of bicyclic graphs and tricyclic graphs with 6 vertices for performing further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.