Abstract
The task of next Point-of-Interest (POI) recommendation aims at recommending a list of POIs for a user to visit at the next timestamp based on his/her previous interactions, which is valuable for both location-based service providers and users. Recent state-of-the-art studies mainly employ recurrent neural network (RNN) based methods to model user check-in behaviors according to user’s historical check-in sequences. However, most of the existing RNN-based methods merely capture geographical influences depending on physical distance or successive relation among POIs. They are insufficient to capture the high-order complex geographical influences among POI networks, which are essential for estimating user preferences. To address this limitation, we propose a novel Graph-based Spatial Dependency modeling (GSD) module, which focuses on explicitly modeling complex geographical influences by leveraging graph embedding. GSD captures two types of geographical influences, i.e., distance-based and transition-based influences from designed POI semantic graphs. Additionally, we propose a novel Graph-enhanced Spatial-Temporal network (GSTN), which incorporates user spatial and temporal dependencies for next POI recommendation. Specifically, GSTN consists of a Long Short-Term Memory (LSTM) network for user-specific temporal dependencies modeling and GSD for user spatial dependencies learning. Finally, we evaluate the proposed model using three real-world datasets. Extensive experiments demonstrate the effectiveness of GSD in capturing various geographical influences and the improvement of GSTN over state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.