Abstract

The field of statistical pattern recognition is characterized by the use of feature vectors for pattern representation, while strings or, more generally, graphs are prevailing in structural pattern recognition. In this paper we aim at bridging the gap between the domain of feature based and graph based object representation. We propose a general approach for transforming graphs into n-dimensional real vector spaces by means of prototype selection and graph edit distance computation. This method establishes the access to the wide range of procedures based on feature vectors without loosing the representational power of graphs. Through various experimental results we show that the proposed method, using graph embedding and classification in a vector space, outperforms the tradional approach based on k-nearest neighbor classification in the graph domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.