Abstract

Cell detection in microscopy images can provide useful clinical information. Most methods based on deep learning for cell detection are fully supervised. Without enough labelled samples, the accuracy of these methods would drop rapidly. To handle limited annotations and massive unlabelled data, semi-supervised learning methods have been developed. However, many of these are trained off-line, and are unable to process new incoming data to meet the needs of clinical diagnosis. Therefore, we propose a novel graph-embedded online learning network (GeoNet) for cell detection. It can locate and classify cells with dot annotations, saving considerable manpower. Trained by both historical data and reliable new samples, the online network can predict nuclear locations for upcoming new images while being optimized. To be more easily adapted to open data, it engages dynamic graph regularization and learns the inherent nonlinear structures of cells. Moreover, GeoNet can be applied to downstream tasks such as quantitative estimation of tumour proportion score (TPS), which is a useful indicator for lung squamous cell carcinoma treatment and prognostics. Experimental results for five large datasets with great variability in cell type and morphology validate the effectiveness and generalizability of the proposed method. For the lung squamous cell carcinoma (LUSC) dataset, the detection F1-scores of GeoNet for negative and positive tumour cells are 0.734 and 0.769, respectively, and the relative error of GeoNet for TPS estimation is 11.1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call