Abstract
Classical graph approaches for pattern recognition applications rely on computing distances between graphs in a certain graph domain. That is, the distance between two graphs is obtained by directly optimising some objective function, which consider node and edge attributes. Bipartite Graph Matching was first published in a journal in 2009 and new versions have appeared to speed up its runtime such as the Fast Bipartite Graph Matching. This algorithm is based on defining a cost matrix between the whole nodes of both graphs and solving the node correspondence through a linear assignment method. To construct the matrix, several local structures can be defined from the simplest one (only the node) to the most complex (a whole clique or eigenvector structure). In this paper, we propose eight different options and we show that the type of local structure and the distance defined between these structures is relevant for the runtime and classification ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.