Abstract

Structural search and feature extraction are a central subject in modern materials design, the efficiency of which is currently limited, but can be potentially boosted by machine learning (ML). Here, we develop an ML-based prediction-analysis framework, which includes a symmetry-based combinatorial crystal optimization program (SCCOP) and a feature additive attribution model, to significantly reduce computational costs and to extract property-related structural features. Our method is highly accurate and predictive, and extracts structural features from desired structures to guide materials design. We first test SCCOP on 35 typical compounds to demonstrate its generality. As a case study, we apply our approach to a two-dimensional B-C-N system, which identifies 28 previously undiscovered stable structures out of 82 compositions; our analysis further establishes the structural features that contribute most to energy and bandgap. Compared to conventional approaches, SCCOP is about 10 times faster while maintaining a comparable accuracy. Our framework is generally applicable to all types of systems for precise and efficient structural search, providing insights into the relationship between ML-extracted structural features and physical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.