Abstract

Factorization machines (FMs) and their neural network variants (neural FMs) for modeling second-order feature interactions are effective in building modern recommendation systems. However, feature interactions are based upon pairs of features, whereas multi-features correlations commonly arise in real-world financial product recommendation scenarios. We propose an effective neural recommender system, graph-convolved factorization machine (GCFM), with the spirit of the symbolic graph reasoning principle that provides lightweight and interpretable recommendation suggestions. Given a sample for the recommendation, GCFM constructs the corresponding dense feature embeddings and computes the sample-specific feature relationship graph. Then, a multi-filter graph-convolved feature crossing (GCFC) layer for feature embeddings establishes cross features with their neighboring embeddings. GCFM thus extends the feature interactions from pairs to neighbors to capture more comprehensive and explainable information while simultaneously reaping the advantages of representation learning. To exploit these capabilities, we apply a Graph Bayesian Optimization (GBO). During training, our GBO automatically optimizes our GCFM, including training hyperparameters and architecture hyperparameters. Besides, we conduct extensive experiments on two public financial applications benchmarks, USCFC and OTC, and two real-world datasets that we collect offline. Our GCFM significantly outperforms state-of-the-art algorithms and shows its interpretability in recommendation tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call