Abstract
We present a graph-convolutional neural network (GCNN)-based method for learning and prediction of statistical torsional profiles (STP) in small organic molecules based on the experimental X-ray structure data. A specialized GCNN torsion profile model is trained using the structures in the Crystallography Open Database (COD). The GCNN-STP model captures torsional preferences over a wide range of torsion rotor chemotypes and correctly predicts a variety of effects from the vicinal atoms and moieties. GCNN-STP statistical profiles also show good agreement with quantum chemically (DFT) calculated torsion energy profiles. Furthermore, we demonstrate the application of the GCNN-STP statistical profiles for conformer generation. A web server that allows interactive profile prediction and viewing is made freely available at https://www.molsoft.com/tortool.html.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.