Abstract

The purpose of graph embedding is to encode the known node features and topological information of graph into low-dimensional embeddings for further downstream learning tasks. Graph autoencoders can aggregate graph topology and node features, but it is highly dependent on the gradient descent optimizer with a large iterative learning time, and susceptible to local optimal solutions. Thus, we propose Graph Convolutional Extreme Learning Machine Autoencoder. To address the limitation that the extreme learning machine autoencoder cannot use topological information, the graph convolution operation is introduced between the input layer and the hidden layer to improve the representation ability of the graph embedding obtained. Experiments of link prediction and node classification on 5 real datasets show that our method is effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.