Abstract
The goal of graph clustering is to partition vertices in a large graph into different clusters based on various criteria such as vertex connectivity or neighborhood similarity. Graph clustering techniques are very useful for detecting densely connected groups in a large graph. Many existing graph clustering methods mainly focus on the topological structure for clustering, but largely ignore the vertex properties which are often heterogenous. In this paper, we propose a novel graph clustering algorithm, SA-Cluster , based on both structural and attribute similarities through a unified distance measure. Our method partitions a large graph associated with attributes into k clusters so that each cluster contains a densely connected subgraph with homogeneous attribute values. An effective method is proposed to automatically learn the degree of contributions of structural similarity and attribute similarity. Theoretical analysis is provided to show that SA-Cluster is converging. Extensive experimental results demonstrate the effectiveness of SA-Cluster through comparison with the state-of-the-art graph clustering and summarization methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.