Abstract
AbstractTerrain data can be processed from the double perspective of computer graphics and graph theory. We propose a hybrid method that uses geometrical and vertex attribute information to construct a weighted graph reflecting the variability of the vertex data. As a planar graph, a generic terrain data set is subjected to a geometry‐sensitive vertex partitioning procedure. Through the use of a combined, thin‐plate energy and multi‐dimensional quadric metric error, feature estimation heuristic, we construct ‘even’ and ‘odd’ node subsets. Using an invertible lifting scheme, adapted from generic weighted graphs, detail vectors are extracted and used to recover or filter the node information. The design of the prediction and update filters improves the root mean squared error of the signal over general graph‐based approaches. As a key property of this design, preserving the mean of the graph signal becomes essential for decreasing the error measure and conserving the salient shape features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.