Abstract

Feature selection has become one of the hot research topics in the era of big data. At the same time, as an extension of single-valued data, interval-valued data with its inherent uncertainty tend to be more applicable than single-valued data in some fields for characterizing inaccurate and ambiguous information, such as medical test results and qualified product indicators. However, there are relatively few studies on unsupervised attribute reduction for interval-valued information systems (IVISs), and it remains to be studied how to effectively control the dramatic increase of time cost in feature selection of large sample datasets. For these reasons, we propose a feature selection method for IVISs based on graph theory. Then, the model complexity could be greatly reduced after we utilize the properties of the matrix power series to optimize the calculation of the original model. Our approach can be divided into two steps. The first is feature ranking with the principles of relevance and nonredundancy, and the second is selecting top-ranked attributes when the number of features to keep is fixed as a priori. In this article, experiments are performed on 14 public datasets and the corresponding seven comparative algorithms. The results of the experiments verify that our algorithm is effective and efficient for feature selection in IVISs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.