Abstract

Advances in acoustic sensing have enabled the simultaneous acquisition of multiple measurements of the same physical event via co-located acoustic sensors. We exploit the inherent correlation among such multiple measurements for acoustic signal classification, to identify the launch/impact of munition (i.e., rockets, mortars). Specifically, we propose a probabilistic graphical model framework that can explicitly learn the class conditional correlations between the cepstral features extracted from these different measurements. Additionally, we employ symbolic dynamic filtering-based features, which offer improvements over the traditional cepstral features in terms of robustness to signal distortions. Experiments on real acoustic data sets show that our proposed algorithm outperforms conventional classifiers as well as the recently proposed joint sparsity models for multisensor acoustic classification. Additionally our proposed algorithm is less sensitive to insufficiency in training samples compared to competing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.