Abstract
Real world datasets often consist of data expressed through multiple modalities. Clustering such datasets is in most cases a challenging task as the involved modalities are often heterogeneous. In this paper we propose a graph-based multimodal clustering approach. The proposed approach utilizes an example relevant clustering in order to learn a model of the "same cluster" relationship between a pair of items. This model is subsequently used in order to organize the items of the collection to be clustered in a graph, where the nodes represent the items and a link between a pair of nodes exists if the model predicted that the corresponding pair of items belong to the same cluster. Eventually, a graph clustering algorithm is applied on the graph in order to produce the final clustering. The proposed approach is applied on two problems that are typically treated using clustering techniques; in particular, it is applied on the problem of detecting social events and to the problem of discovering different landmark views in collections of social multimedia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.