Abstract

Terrestrial lidar is capable of resolving trees at the branch/leaf level with accurate and dense point clouds. The separation of leaf and wood components is a prerequisite for the estimation of branch/leaf-scale biophysical properties and realistic tree model reconstruction. Most existing methods have been tested on trees with similar structures; their robustness for trees of different species and sizes remains relatively unexplored. This study proposed a new graph-based leaf–wood separation (GBS) method for individual trees purely using the xyz-information of the point cloud. The GBS method fully utilized the shortest path-based features, as the shortest path can effectively reflect the structures for trees of different species and sizes. Ten types of tree data—covering tropical, temperate, and boreal species—with heights ranging from 5.4 to 43.7 m, were used to test the method performance. The mean accuracy and kappa coefficient at the point level were 94% and 0.78, respectively, and our method outperformed two other state-of-the-art methods. Through further analysis and testing, the GBS method exhibited a strong ability for detecting small and leaf-surrounded branches, and was also sufficiently robust in terms of data subsampling. Our research further demonstrated the potential of the shortest path-based features in leaf–wood separation. The entire framework was provided for use as an open-source Python package, along with our labeled validation data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.