Abstract

Significant increases in cyberattacks worldwide have threatened the security of organizations, businesses, and individuals. Cyberattacks exploit vulnerabilities in software systems. Recent work has leveraged powerful and complex models, such as deep neural networks, to improve the predictive performance of vulnerability detection models. However, these models are often regarded as “black box” models, making it challenging for software practitioners to understand and interpret their predictions. This lack of explainability has resulted in a reluctance to adopt or deploy these vulnerability prediction models in industry applications. This paper proposes a novel approach, Genetic Algorithm-based Vulnerability Prediction Explainer, (herein GAVulExplainer), which generates explanations for vulnerability prediction models based on graph neural networks. GAVulExplainer leverages genetic algorithms to construct a subgraph explanation that represents the crucial factor contributing to the vulnerability. Experimental results show that our proposed approach outperforms baselines in providing concrete reasons for a vulnerability prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.