Abstract

Complex dynamical systems are often governed by equations containing many unknown parameters whose precise values may or may not be important for the system's dynamics. In particular, for chemical and biochemical systems, there may be some reactions or subsystems that are inessential to understanding the bifurcation structure and consequent behavior of a model, such as oscillations, multistationarity and patterning. Due to the size, complexity and parametric uncertainties of many (bio)chemical models, a dynamics-preserving reduction scheme that is able to isolate the necessary contributors to particular dynamical behaviors would be useful. In this contribution, we describe model reduction methods for mass-action (bio)chemical models based on the preservation of instability-generating subnetworks known as critical fragments. These methods focus on structural conditions for instabilities and so are parameter-independent. We apply these results to an existing model for the control of the synthesis of the NO-detoxifying enzyme Hmp in Escherichia coli that displays bistability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.