Abstract

Due to a lack of labeled samples, deep learning methods generally tend to have poor classification performance in practical applications. Few-shot learning (FSL), as an emerging learning paradigm, has been widely utilized in hyperspectral image (HSI) classification with limited labeled samples. However, the existing FSL methods generally ignore the domain shift problem in cross-domain scenes and rarely explore the associations between samples in the source and target domain. To tackle the above issues, a graph-based domain adaptation FSL (GDAFSL) method is proposed for HSI classification with limited training samples, which utilizes the graph method to guide the domain adaptation learning process in a uniformed framework. First, a novel deep residual hybrid attention network (DRHAN) is designed to extract discriminative embedded features efficiently for few-shot HSI classification. Then, a graph-based domain adaptation network (GDAN), which combines graph construction with domain adversarial strategy, is proposed to fully explore the domain correlation between source and target embedded features. By utilizing the fully explored domain correlations to guide the domain adaptation process, a domain invariant feature metric space is learned for few-shot HSI classification. Comprehensive experimental results conducted on three public HSI datasets demonstrate that GDAFSL is superior to the state-of-the-art with a small sample size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.