Abstract

For intelligent tutoring systems, Cognitive Diagnosis (CD) is a fundamental task that aims to estimate the mastery degree of a student on each skill according to the exercise record. The CD task is considered rather challenging since we need to model inner-relations and inter-relations among students, skills, and questions to obtain more abundant information. Most existing methods attempt to solve this problem through two-way interactions between students and questions (or between students and skills), ignoring potential high-order relations among entities. Furthermore, how to construct an end-to-end framework that can model the complex interactions among different types of entities at the same time remains unexplored. Therefore, in this paper, we propose a graph-based Cognitive Diagnosis model (GCDM) that directly discovers the interactions among students, skills, and questions through a heterogeneous cognitive graph. Specifically, we design two graph-based layers: a performance-relative propagator and an attentive knowledge aggregator. The former is applied to propagate a student’s cognitive state through different types of graph edges, while the latter selectively gathers messages from neighboring graph nodes. Extensive experimental results on two real-world datasets clearly show the effectiveness and extendibility of our proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call