Abstract
Click-through rate prediction is a critical task for computational advertising and recommendation systems, where the key challenge is to model feature interactions between different feature domains. At present, the main click-through rate prediction models model feature interactions in an implicit way, which leads to poor interpretation of the model, and the interaction between each pair of features may introduce noise into the model, thus limiting the predictive ability of the model. In response to the above problems, this paper proposes a click-through rate prediction model (GAIAN) based on the graph attention interactive aggregation network, which explicitly obtains cross features on the graph structure. Our specific method is to design a feature interactive selection mechanism to select cross features that are beneficial to model prediction, reducing model noise and reducing the risk of model overfitting. On this basis, the bilinear interaction function is integrated into the aggregation strategy of the graph neural network, and the fine-grained intersection features are extracted in a flexible and explicit way, which makes graph neural networks more suitable for modeling feature interactions and enhances the interpretability of the model. Compared with several other state-of-the-art models on the Criteo and Avazu datasets, the experimental results show the superiority of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.