Abstract
To perform any meaningful optimization task, power distribution operators need to know the topology and line impedances of their electric networks. Nevertheless, distribution grids currently lack a comprehensive metering infrastructure. Although smart inverters are widely used for control purposes, they have been recently advocated as the means for an active data acquisition paradigm: reading the voltage deviations induced by intentionally perturbing inverter injections, the system operator can potentially recover the electric grid topology. Adopting inverter probing for feeder processing, a suite of graph-based topology identification algorithms is developed here. If the grid is probed at all leaf nodes but voltage data are metered at all nodes, the entire feeder topology can be successfully recovered. When voltage data are collected only at probing buses, the operator can find a reduced feeder featuring key properties and similarities to the actual feeder. To handle modeling inaccuracies and load nonstationarity, noisy probing data need to be preprocessed. If the suggested guidelines on the magnitude and duration of probing are followed, the recoverability guarantees carry over from the noiseless to the noisy setup with high probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.