Abstract
Grapevine red blotch virus (GRBV) is the causal agent of grapevine red blotch disease and is known to delay grape ripening. However, grape cell-wall modifications during GRBV infection are largely unknown, even though the cell wall plays a large role in pathogenicity, viral interactions with host plants, and phenolic extractability during winemaking. Understanding the impact of GRBV infection on cell-wall metabolism is important for the development of potential mitigations strategies. In this study, high-throughput transcriptome sequencing was conducted on Vitis vinifera L. 'Merlot' grapes during ripening. The cell-wall composition, phenolic content, and phenolic extractability at two different commercial harvest points were also determined. Log fold changes indicated a strong induction in diseased grapes at harvest of several transcripts involved in cell-wall solubilization and degradation. However, these observations did not translate to changes in cell-wall composition at either harvest point in diseased grapes, potentially suggesting post-transcriptional regulation. Moderate induction of pectin methylesterase inhibitor transcripts and transcripts associated with pathogenesis-related proteins coincided with increases in pectin and soluble proteins in cell walls of diseased grapes at harvest. Both pectin and pathogenesis-related proteins are known to retain phenolic compounds during winemaking. Our study corroborates this finding when the percentage extractability of flavonols in wines was significantly lower when made from GRBV-infected fruit. These results suggest GRBV alters the grape cell walls, consequently decreasing phenolic extraction during winemaking. © 2023 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.