Abstract

Five virus genomes, ranging between 12.0 and 12.3 kb in length and identified as endornaviruses, were discovered through a high-throughput sequencing (HTS) analysis of the total RNA samples extracted from two wine grape cultivars collected in the State of Idaho. One was found in a declining Chardonnay vine and was determined to be a local isolate of grapevine endophyte endornavirus (GEEV), and four others represented two novel endornaviruses named grapevine endornavirus 1 (GEV1) and grapevine endornavirus 2 (GEV2). All three virus genomes span a large, single open reading frame encoding polyproteins with easily identifiable helicase (HEL) and RNA-dependent RNA polymerase (RdRP) domains, while the GEV2 polyprotein also contains a glycosyltransferase domain. The GEV1 genome found in an asymptomatic Cabernet franc vine was related to, but distinct from, GEEV: the 5'-proximal, 4.7 kb segment of the GEV1 genome had a 72% identical nucleotide sequence to that of GEEV, while the rest of the genome displayed no significant similarity to the GEEV nucleotide sequence. Nevertheless, the amino acid sequence of the RdRP domain of GEV1 exhibited the closest affinity to the RdRP of GEEV. GEV2 was found in declining Chardonnay and asymptomatic Cabernet franc vines as three genetic variants exhibiting a 91.9-99.8% nucleotide sequence identity among each other; its RdRP had the closest affinity to the Shahe endorna-like virus 1 found in termites. In phylogenetic analyses, the RdRP and HEL domains of the GEV1 and GEV2 polyproteins were placed in two separate clades inside the large lineage of alphaendornaviruses, showing an affinity to GEEV and Phaseolus vulgaris endornavirus 1, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call