Abstract

Objective The main objective of this study was to evaluate the effect of procyanidin intake on the level of inflammatory mediators in rats fed a hyperlipidic diet, which are a model of low-grade inflammation as they show an altered cytokine production. Design Male Zucker Fa/fa rats were randomly grouped to receive a low-fat (LF) diet, a high-fat (HF) diet or a high-fat diet supplemented with procyanidins from grape seed (HFPE) (345 mg/kg feed) for 19 weeks and were then euthanized. We determined biochemical parameters, C-reactive protein (CRP) and IL-6 levels in plasma. Adipose tissue depots and body weight were also determined. We assessed CRP, IL-6, TNF-α and adiponectin gene expression in liver and white adipose tissue (WAT). Results As expected, rats fed the HF diet show an enhanced production of CRP. Our results demonstrate that the HFPE diet decreases rat plasma CRP levels but not IL-6 levels. The decrease in plasma CRP in HFPE rats is related to a down-regulation of CRP mRNA expression in the liver and mesenteric WAT. We have also shown a decrease in the expression of the proinflammatory cytokines TNF-α and IL-6 in the mesenteric WAT. In contrast, adiponectin mRNA is increased in this tissue due to the procyanidin treatment. As previously reported, CRP plasma levels correlate positively with its expression in the mesenteric WAT, suggesting that procyanidin extract (PE) modulates CRP at the synthesis level. CRP plasma levels also correlate positively with body weight. As expected, body weight is associated with the adiposity index. Also, TNF-α expression and IL-6 expression have a strong positive correlation. In contrast, the expression of the anti-inflammatory cytokine adiponectin correlates negatively with the expression of TNF-α and IL-6 in the mesenteric WAT. Conclusion These results suggest a beneficial effect of PE on low-grade inflammatory diseases, which may be associated with the inhibition of the proinflammatory molecules CRP, IL-6 and TNF-α and the enhanced production of the anti-inflammatory cytokine adiponectin. These findings provide a strong impetus to explore the effects of dietary polyphenols in reducing obesity-related adipokine dysregulation to manage cardiovascular and metabolic risk factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.