Abstract

Use of long period gratings (LPGs) formed in grapefruit photonic crystal fiber (PCF) with thin-film overlay coated on the inner surface of air holes for gas sensing is demonstrated. The finite-element method was used to numerically simulate the grapefruit PCF–LPG modal coupling characteristics and resonance spectral response with respect to the refractive index of thin-film inside the holey region. A gas analyte-induced index variation of the thin-film immobilized on the inner surface of the holey region of the fiber can be observed by a shift of the resonance wavelength. As an example, we demonstrate a 2,4-dinitrotoluene (DNT) sensor using grapefruit PCF–LPGs. The sensor exhibits a wavelength blue-shift of ∼820 pm as a result of exposure to DNT vapor with a vapor pressure of 411 ppb v at 25°C, and a sensitivity of 2 pm ppb v −1 can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.